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1 Introduction

When considering a city’s or town’s infrastructure the primary point of concern would be the road

network. A road network is critical for facilitating the movement of people, goods and services, which

in turn sustain the area in question. In a technical context, the road network acts in a similar manner

to any other network type, such as an electrical grid, blood vessel system, or tree roots. There is

movement through the network in the form of traffic, which represents a state of flow. Flow here, is

also governed by physical factors, such as the network’s connectivity or blockages. Developing a city’s

road infrastructure to allow efficient flow is imperative to its function. A common concept of road

network planning, especially in the case of established road infrastructures, is to identify the possible

roads (or even junctions) that are prone failure so that the appropriate care towards these locations

can be allocated.

Consider the impact of a blockage occurring on a local road allowing through traffic in a residential

area. At a highly localized level, it is easy to predict the short-term outcome of this event: traffic will

loop round through other connecting roads to make it to the other side. However, this quickly leads

to follow up questions. What if a collision occurred on an arterial roadway? What if a certain number

roads were blocked at the same time?

1.1 Problem Statement

With the above, we formalise the motivation of this study, which is to make use of a complex road

network extracted from openstreetmaps and apply one of the many methodologies used in network

science to highlight these locations prone to failure. In our case, with a limited amount of information

available as open source and free, we have chosen to make use of the road network’s inherent con-

nectivity to test its resilience and assess the impact of disturbances made to these vulnerable points.

Using free and open source data we also propose useful means and methodologies for local management

authorities to cost effectively accomplish the same tasks that can be done with expensive software and

proprietary data sources. We find that it takes very little to completely take apart a city’s or town’s

ability to move around by way of vehicles. This is important to highlight since it makes any given

road network highly vulnerable to problems which the authorities should be aware of and mitigate

them by, for example, ensuring that specific blockages do not happen at the same time.
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2 Related work

We aim to follow the main propositions made in Da Cunha et al. (2015). Whilst this research article

aims to prove that the Module-Based Attack is the most efficient form of network attack we instead

make use of it in the latter stages of this study. The research paper makes use of this methodology

on several networks, none of which are road networks unfortunately. However, the US power grid

network that is used in this research article can be considered to be planar and similar in nature to a

road network and can provide a viable basis for comparison with the results in this study.

This study is unique in its approach to establish road network vulnerabilities and as such there is

not much directly related work. We find that most vulnerability analysis uses methodology that

requires edge utilization figures. Li et al. (2020) employs the idea of congestion propagation on Taipei

road networks. The paper proposes an algorithm to help identify potential congestion bottleneck

points using maximal spanning trees and Markov analysis together with helping understand how a

congestion would spread across the road network with edge congestion correlation. It also makes

use of network edges weighted with the congestion cost derived from average travel speed and road

occupancy data and proposes a novel way to identify congested road segments whereby a fraction of

the average travel speed is used as a threshold. This as opposed to a blanket threshold used by local

management authorities. Any road segment with a travel speed less than this threshold is considered

to be congested. In a similar respect, Thilakshan et al. (2020) makes use of the Google Maps API

(Application Programming Interface) and a software called ArcGIS to obtain travel time data and use

discrepancies in this data to find bottlenecks. Qu et al. (2019) also makes use of edge utilization data

together with the Ford-Fulkerson algorithm to establish congestion points. These papers make use of

proprietary data sources and suggest an important next step to this study, which is to utilize road

traffic data.

3 Exploratory Data Analysis

In our exploratory data analysis we look at my home town of Watford based on the north-west edge

of greater London within the M25 orbital motorway. We compare it with a much more central part of

a city such as Central London very much in the way the report Park & Yilmaz (2010) has approached

its analysis. We compare briefly a few attributes of both road networks before working solely with

Watford following on. Figure 1a shows a simplified extract of the vehicular road network of Watford

extracted from openstreetmaps. Each node represents a junction between edges or roads.
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(a) Vehicular road network of Watford
(b) Vehicular road network around Euston

Figure 1

From a cursory and visual inspection it can immediately be concluded that Euston has a much more

denser road infrastructure. However, looking deeper at the degree centrality for both road networks

as shown in Figure 2, we can see that a much more central area like Euston can have a very distinct

degree distribution with nodes of degree 3,4 and 5 being more common compared to what is seen in

Watford. Both road networks however have a high number of nodes with degree 6 as representative

of a lot of 3 point junctions with edges entering and leaving the node. It is interesting that Watford

would have marginally larger network density as seen in Table 1. This could be attributed to the fact

that Euston would have more junctions meaning that Watford would be closer to a fully connected

network pertaining to the definition of network density
(

Actual Connections
Potential Connections

)
. However, this difference

is very small and can relate back to the fact that road networks are planar in nature (Park & Yilmaz

2010). Lastly, Figure 3 shows us the edge closeness centrality.
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(a) Degree distribution for Watford (b) Degree distribution for Euston

Figure 2

Watford Euston

Density 0.001179 0.000855

Nodes 1873 2506

Edges 4135 5366

Best Modularity 0.93 0.91

Number of communities 33 31

Number of inter-comm edges 162 356

Table 1: Network statistics
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(a) Edge closeness centrality of Watford (b) Edge closeness centrality of Euston

Figure 3

4 Module-Based Attack (MBA)

We now focus our attention solely on Watford’s vehicular network. To assess network resilience and

establish vulnerabilities we make use of a Module-Based Attack (MBA) as detailed in Da Cunha et al.

(2015). We start by establishing the best community structure and this is done through the use of

the Louvain Algorithm as a necessary part of the MBA procedure (Da Cunha et al. 2015). It is

implemented with several runs and we pick out run that yielded the best modularity - a metric that

calculates a ratio of edges between and within communities and gives an idea of community strength.

Once we have the best modularity it is then required to establish the between-community edges and

sort them from highest closeness centrality to lowest (Da Cunha et al. 2015). Next we remove edges

in order of their closeness centrality and if they belong to the giant component of the network. This

means that we can skip some between-community edges if they are not part of the giant component

(Da Cunha et al. 2015).

4.1 Results and Discussion

To understand the response the removal of edges gives in the network a graph of the probability of a

node being in the giant component as a function of percentage of edges removed is seen in Figure 4.
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Figure 4: Network response through the removal of edges

Figure 4 shows us that the network can be perceived to cease to function with approximately 2% of

its edges removed. This falls in a similar range to the comparable planar network of the US power

grid used in Da Cunha et al. (2015) whereby it took approximately 3% of edges to cause ”maximum

damage”. A large response is also seen if just short of 1% of edges are removed - a mere 22 edges (This is

subject to best community detection run and can vary up until 1.5%. This experiment however caused

a large response in the smallest number of edges - i.e the most efficient attack). This can possibly also

cause serious disturbance in the vehicular road network and can be more likely to happen instead of a

full network breakdown in a fully coordinated network attack (removal of 54 edges). The edge or road

deletion causing the massive response was named ”Hempstead Road”. However, digressing slightly

from the research article Da Cunha et al. (2015), it can be assumed that if the edges leading up to

this response could also be of significant relevance as these edges, if deleted in a different order, may

have the same impact with the last edge deletion causing a similar large response seen in Figure 4.

Following in line with this argument, Figure 5a shows the network with the edges deleted that led to

the large response and ”Hempstead Road” highlighted in the map in Figure 5b as the left-most edge

towards the bottom causing the large response.
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(a) Edges leading to large response
(b) Zoomed map (bottom left of red edges)

Figure 5

In an attempt to quantify the impact a disturbance to these edges would have on the road network

without the use of an abstract probability measure we assess the diameter of an ego network where

the interaction distance has been set to be the time it takes to travel out of a specific location. In

doing so we primarily have to obtain the traversable time for each edge (i.e. the minimum time it

takes to drive through the road at the speed limit assuming no braking and slowing down). The graph

extracted from openstreetmaps fortunately had edge lengths in meters and some edges had been given

their appropriate speed in miles per hour. For the edges without a speed feature an assumption was

made for ”residential”, ”unclassified” and ”tertiary” roads to have a speed of 30 miles per hour and

”secondary”,”primary” and ”trunk” roads to have a speed of 50 miles per hour with the rest taking

a speed of 70 miles per hour. These assumptions have been derived by looking at OSM (2021) and a

basic understanding of driving laws in the United Kingdom. A simple conversion of miles per hour into

meters per minute together with the length of edges allowed for a calculation of the traversable time

(mins) feature for each edge or road. Using my home road of ”Stratford Road” and its appropriate

closest node, Figure 6 was obtained once the traversable time (mins) feature was calculated.
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Figure 6: Distances that can be traversed in minutes with no delay

We now reconsider the edges in Figure 5a. Rather than their deletion we can alter the traversable

time (mins) parameter to range from 1,2,3,5 and 10 minute traversable times to simulate a delay

and visually see the impact to the ego networks. In successive iterations it can be seen that the

ego networks recede and become smaller in size with a traveller being constrained to the top left of

Watford for a 6 minute journey as shown in Figure 7e.
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(a) 1 minute (b) 2 minutes (c) 3 minutes

(d) 5 minutes (e) 10 minutes

Figure 7: Edges involved in large response with increased traversable time

Looking at the largest ego network for the distance that can be travelled for each of the delay experi-

ments we can plot the following graph shown in Figure 8. A comparison with a randomized selection

of the same number of edges with the same delays shows that the averaged diameter (across 50 exper-

iments for each time delay) of the largest ego network remains fairly unchanged. What this essentially

proves is that vehicles are able to easily circumnavigate a blockage on a non-vulnerable road. In the

case of vulnerable roads seen in Figure 5a, increasing delays contribute significantly to a decline in

diameter and paralyse movement.
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Figure 8: Diameter of largest ego network with increasing traversable times

5 Next Steps

As such, we cannot conclude that a road networks inherent connectivity is related to the way travellers

in vehicles behave. For instance, it might be the case that a certain section of road could belong to an

industrial complex and only facilitate only a certain type of vehicle or perhaps people would not even

have the need to go there. Therefore it is convenient to also, in conjunction with the methodologies

used in this study, make use of road traffic or capacity data which can be obtained from services

such as google maps or ArcGIS whereby ideas used in Qu et al. (2019) can be implemented. The

Ford-Fulkerson algorithm or a Max-flow Min-cut algorithm can be used to find the edges that are

most prone to congestion and compare with the results obtained from the Module-Based Attack. It is

essential to note however that with Ford-Fulkerson and Max-flow Min-Cut we have to specify origin

and destination points within the network. Unless known explicitly, to generalise this would require

a permutation of these origin and destination nodes and acquire an aggregated result of experiments.

It can also be possible to follow what Qu et al. (2019) refers to as the ”super-OD method” and create

an additional origin and destination node in the general area and direction of travel (i.e north-south,

west-east, or vice-versa).
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Da Cunha, B. R., González-Avella, J. C. & Gonçalves, S. (2015), ‘Fast fragmentation of networks

10



using module-based attacks’, PLoS ONE 10(11), 1–15.

Li, C., Yue, W., Mao, G. & Xu, Z. (2020), ‘Congestion Propagation Based Bottleneck Identification

in Urban Road Networks’, IEEE Transactions on Vehicular Technology 69(5), 4827–4841.

OSM (2021), ‘Openstreetmaps Wiki’.

URL: https://wiki.openstreetmap.org/wiki/Key:highway

Park, K. & Yilmaz, A. (2010), A SOCIAL NETWORK ANALYSIS APPROACH TO ANALYZE

ROAD NETWORKS, Technical report.

Qu, Q.-K., Chen, F.-J. & Zhou, X.-J. (2019), ‘Road traffic bottleneck analysis for expressway for

safety under disaster events using blockchain machine learning’.

URL: https://doi.org/10.1016/j.ssci.2019.06.030

Thilakshan, T., Rajapaksha, G. & Bandara, S. (2020), ‘An Approach to Identify Bottlenecks in Road

Networks using Travel Time Variations: A Case Study in the City of Colombo and Suburbs’,

MERCon 2020 - 6th International Multidisciplinary Moratuwa Engineering Research Conference,

Proceedings pp. 372–377.

11


